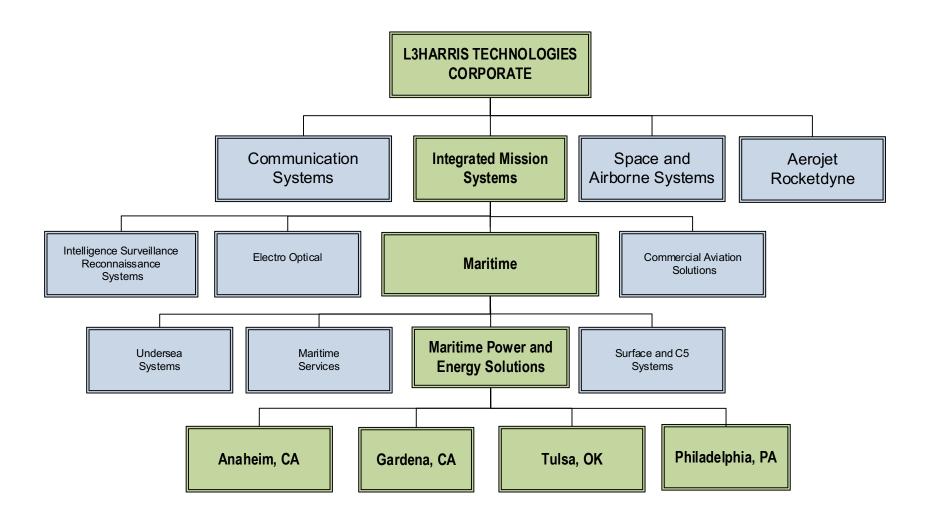


PRACTICAL APPLICATIONS OF NANOCRYSTALLINE TO L3HARRIS MARITIME POWER AND ENERGY POWER CONVERSION EQUIPMENT

Reynaldo Presbitero | Senior Fellow

August 17, 2023

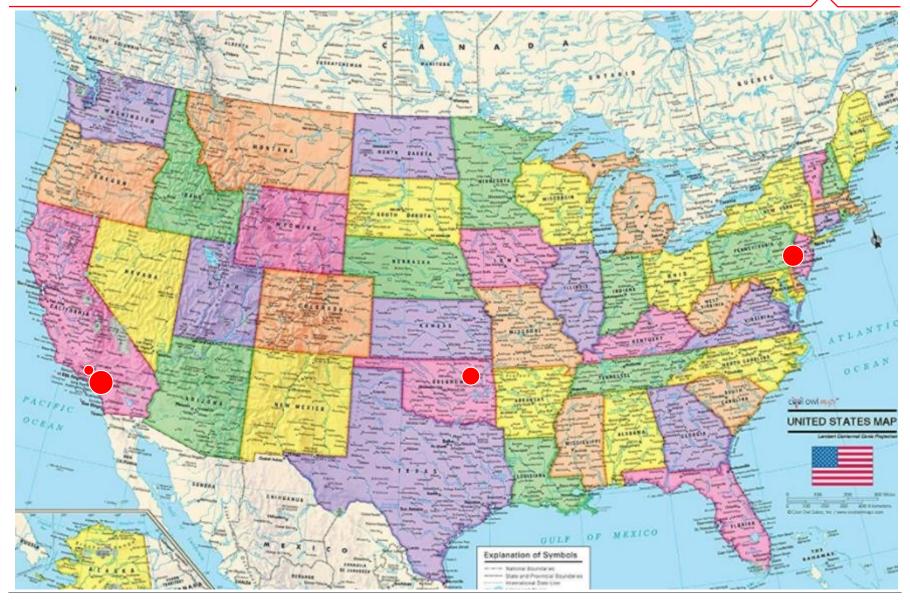
This document consists of general capabilities information that is not defined as controlled technical data under ITAR Part 120.10 or EAR Part 772


Table of Contents

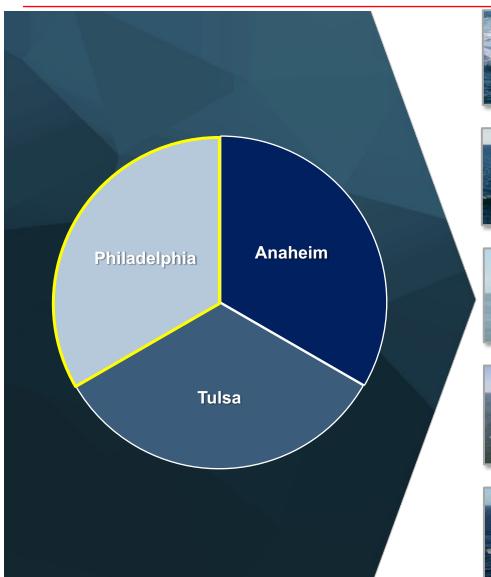
- 1. Introduction
- 2. Engineering Opportunities
- 3. Engineering Analysis Tools
- 4. Power Electronics Building Blocks
- 5. Power Conversion Equipment Requirements
- 6. Magnetics Requirements
- 7. Magnetic Cores Suppliers
- 8. Transformers and Inductors Suppliers
- 9. Questions

MPES At-A-Glance

MPES At-A-Glance


- Our Mission: Provide safe, reliable, innovative military power solutions to defend our nation and allies, and to support critical industrial infrastructure
- Our Vision: To be the preferred supplier for mission critical electrical power solutions
- ❖We Provide: Major U.S. Navy shipbuilding programs with high-power quality, reliable, shock-hardened, EMIcompliant, electrical power distribution, conversion, protection and control systems
- Our Markets and Customers are:
 - U.S. Navy, International Navies, and industrial applications
- ❖We Distinguish Ourselves by: Superior product quality and processes; Combat worthy products; 40 – 50 year life cycle; Full service and support

MPES Site Locations


Anaheim, CA; Gardena, CA; Tulsa, OK; Philadelphia, PA

Maritime Power & Energy Solutions (MPES) Division

MPES-Anaheim

Power Conversion Modules, Frequency Converters, Advanced Degaussing Systems, Automatic Bus Transfer, Fault Isolation Unit, Medium Voltage Motor Drive

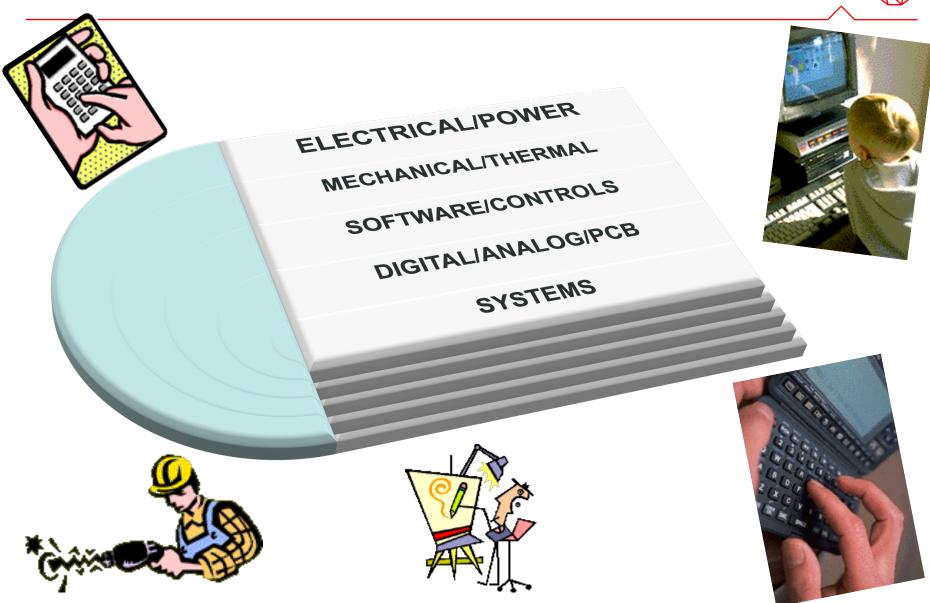
MPES-Philadelphia

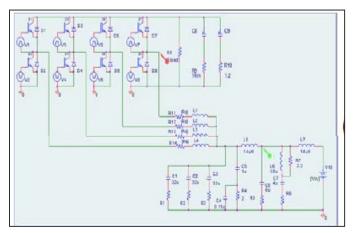
Power Node Control Centers, Switchboards, Circuit Breakers, Power Converters, Motor Controllers, Bus Transfer & Isolation Relay

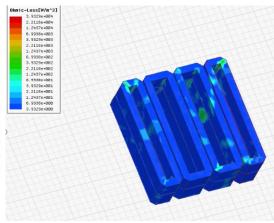
MPES-Tulsa

Switchboards, Load Centers, Power & Lighting Panels, Arc Fault Detection

MPES Sites Anaheim, Philadelphia, and Tulsa

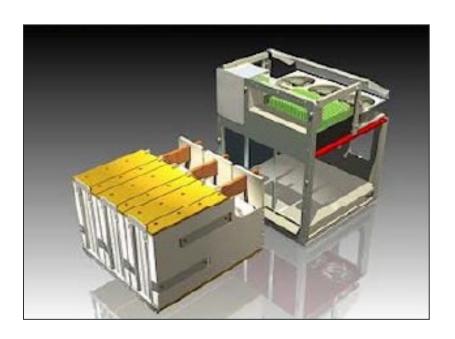

- Manufacturing & Engineering Capabilities
- Electrical Power Conversion and Distribution Equipment for Shipboard applications
 - AC/DC Converters of all types –10 kW up to 6MW
 - Circuit Breakers
 - Switchboards and Load Centers
 - 400 Hz supplies for weapons systems
 - Aircraft starting systems
 - Arc Fault Detection Systems
- Test Capabilities
 - EMI (MIL-STD-461 rated)
 - Airborne and Structureborne Noise
 - Thermal
 - Humidity
 - Vibration
 - Lightweight Shock

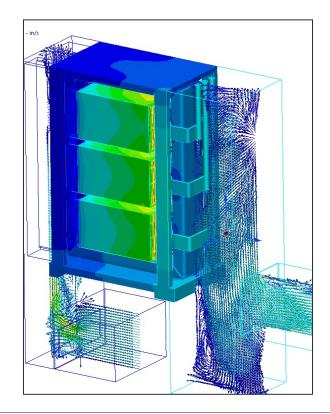




Key Tasks In Engineering

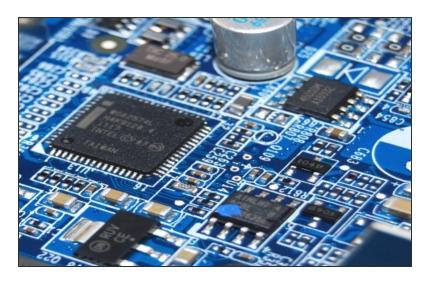
- State of the Art Power Conversion, Conditioning, and Control
 - Power topology design/selection
 - High-power quality, bi-directional power conversion
 - ☐ Circuit analysis and advanced control algorithm modeling and simulation
 - ☐ Electromagnetic field modeling and simulation
 - Optimize components layout for electromagnetic compatibility (EMC)
 - ☐ Design development, integration, verification, and qualification





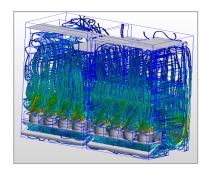
Key Tasks In Engineering (cont'd)

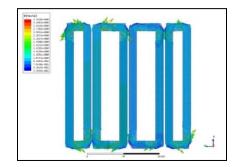
- Advanced Mechanical Design, Packaging, and Analysis
 - ☐ FEA structural analysis for high shock and vibration environments (incl. non-linear and dynamic analysis)
 - ☐ CFD airflow and thermal analysis, modeling, and simulation

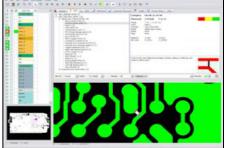


Key Tasks In Engineering (cont'd)

- SW/FW Architecture Design, Development, and Integration
 - ☐ Embedded software for power conversion algorithms
 - ☐ High-level applications interfaced with embedded modules
 - ☐ Graphical User Interface (GUI) /Human-Machine-Interface (HMI) development and implementation
 - ☐ Digital logic design for FPGAs; VHDL coding and timing simulations
 - ☐ Digital signal processing algorithms for FPGAs and CPLDs

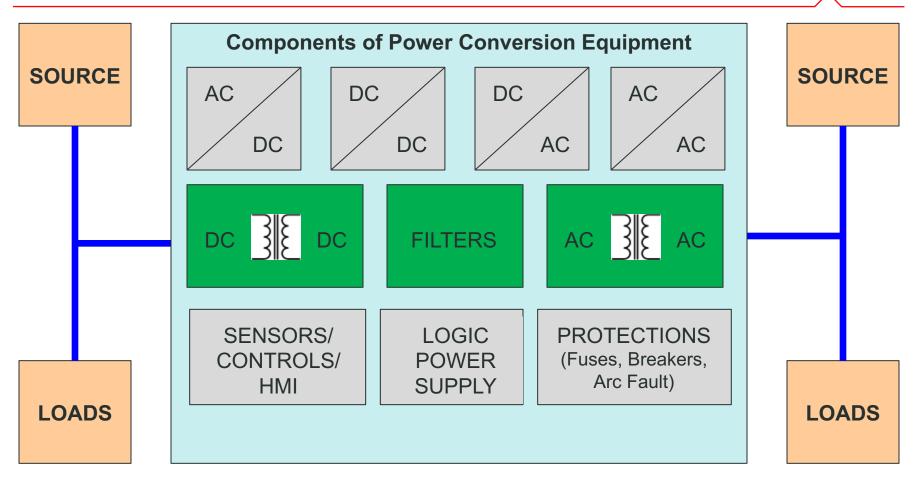

Engineering Analysis Tools




Design to Manufacture


> Enhanced analysis tools to achieve design to manufacture in a short time

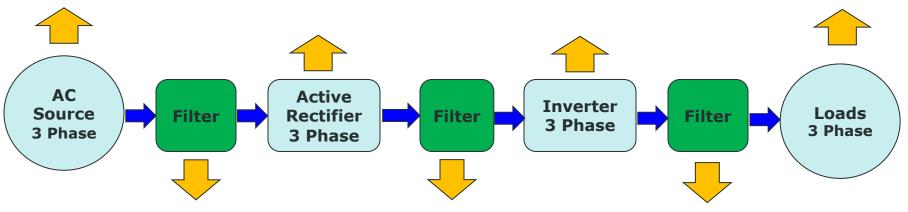
Mechanical Analysis Tools	Power, Elect, Digital, Controls Analysis Tools	PCB Design	Software Coding
 3D Computer Aided Design (CAD) – Autodesk Inventor Structural / Dynamic Finite Elemental Analysis (FEA) – Ansys Mechanical Computational Fluid Dynamics (CFD) Analysis – Autodesk 	 ORCAD PSpice Circuit and Analysis – Cadence Matlab / Simulink Controls Analysis – Mathworks Maxwell 2D/3D Magnetic Flux Analysis – Ansys Simplorer Circuit Analysis - Ansys FPGA Firmware and VHDL Coding and Analysis – Questa SIM LabView rapid prototyping – National Instruments 	 Cadence Capture CIS / CIP Mentor Graphics Valor DfM / DfA PCB Library Expert Cadence Allegro 	 GSA Software WindRiver Rational Team Concert Code Warrior Visual Studio



Power Electronics Building Blocks

Establishing the basic components of Power Electronics and utilizing these as building blocks for Power Conversion to expedite maturity level

Power Electronics Building Blocks


Common building blocks for Power Conversion (AC/AC)

- Prime Mover
- 440Vac/60 Hz, 3 Phase
- Cooling
- Fuses
- Breakers
- Transfer Switches

- Full Bridge, Interleaved
- Voltage/Current Control
- Harmonic Elimination
- Power Factor Correction
- Cooling
- Fuses

- Full Bridge, Interleaved
- Voltage/Current Control
- Harmonic Elimination
- Cooling
- Fuses

- Linear Load
- Non-Linear Load
- Motor Load
- Fuses
- Breakers
- Cooling

- Low Pass Passive Filter
- Surge Protection
- EMI Reduction
- Cooling

- Low Pass Passive Filter
- Bulk Capacitance
- Cooling

- Low Pass Passive Filter
- Surge Protection
- EMI Reduction
- Cooling

Establishing common power architectures to avoid reinventing the wheel

Power Electronics Building Blocks

Common building blocks for kW Power Conversion (DC/DC)

DC Source Motor Full Bridge, Interleaved Full Bridge, Interleaved Fuses **Fuses** Voltage/Current Control Voltage/Current Control **Breakers Breakers** Cooling Cooling Transfer Switches Cooling **Fuses Fuses** Cooling DC DC/DC **Isolation** DC/DC **Filter Filter** Loads Source Converter Converter Stage Low Pass Passive Filter Low Pass Passive Filter Full Bridge Surge Protection Surge Protection **Galvanic Isolation EMI Reduction EMI** Reduction Cooling Cooling Cooling **Fuses**

Establishing common power architectures to avoid reinventing the wheel

Requirements

Power Conversion Equipment Requirements to be Considered

- Cost
- Power density
- Size and volume
- Efficiency
- Topology
- Technology available
- Ratings (voltage, current, and power)
- Thermal management
- Reliability
- Manufacturability
- Environmental robustness
- Maintainability
- Equipment support

Additional Requirements

Other parameters from component Suppliers to be considered

- Time to Market
- Multiple Suppliers or Sole Source for components
- Component lead times
- Annual product demand
- ITAR requirements
- US Citizenship requirements

Magnetics Requirements

Magnetics Applications at MPES

- Transformers
- Inductors

Needs from Magnetics Material

- Low no-load losses
- Extended overload capacity
- Increased efficiency
- Low environmental impact
- Higher permeability
- Consistency performance over temperature range
- High saturation
- Manufacturing flexibility
- Low Magnetorestriction

Processes for Considerations

Design Considerations

- Power rating
- · Voltage rating
- AC current rating
- DC current rating
- Overload ratings
- Inductance
- Leakage inductance
- Magnetizing inductance
- Turns ratio
- Gap
- · Core architecture
 - Shell type
 - Core type
- Materials
 - Core type
 - Core material
 - Coil type
 - Insulation
 - Mechanical structure
- Weight
- Size
- Copper loss
- · Core loss
- Cooling
- Dielectric withstand voltage

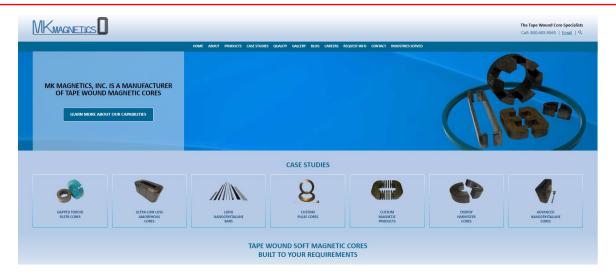
Core Considerations

- Core material
- Core supplier
- Annealing
- Integrity of gap
- Manufacturing process
 - Consistency
 - Quality
- Cost
- Lead time
- ITAR restrictions

Coil Considerations

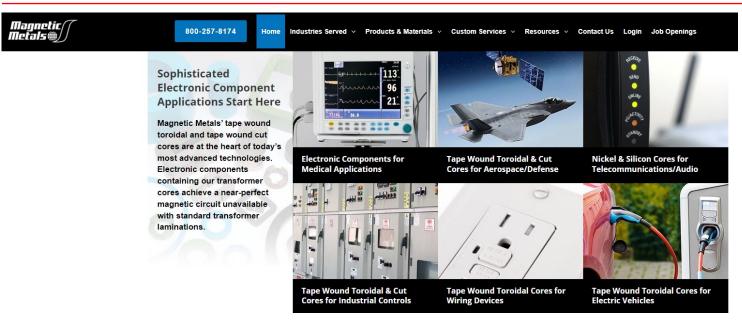
- Coil supplier
- Quality
- Manufacturing process
 - Consistency
 - Quality
- Cost
- Lead time
- ITAR restrictions

Magnetics Build Considerations


- Manufacturer
- Coil form
- Core stack
- · Mechanical structure
- Insulation
- Varnish
- Test
- Manufacturing process
 - Consistency
 - Quality
- Cost
- Lead time
- · ITAR restrictions

Additional Factors to Consider

- Unique aspects of nanocrystalline soft magnetics
 - Magnetorestriction force Nanocrystalline has low magnetorestriction force than Metglas
 - Temperature dependency Nanocrystalline has a higher temperature rating than Metglas
 - Overload capacity Nanocrystalline has a lower overload capability than Metglas
 - Flux density Nanocrystalline has a lower flux density than Metglas
- Original Equipment Manufacturer (OEM) interests and needs
 - Networking through Distributors, Symposiums, and Conferences
 - Off-the-shelf solutions or custom design solution
 - Collaboration with OEMs from conceptual design to product delivery
 - User friendly website with product information, application notes, and simulation tools
 - Reachable and knowledgeable Technical Support Team
 - Lead time
 - Product reliability and consistent results
- Ways to engage OEMs
 - Engage OEMs in a 1-hour Teams seminar to discuss unique products, innovative solutions, and 5-year term goal
 - Annual local conferences and symposiums



ADVANCED NANOCRYSTALLINE CORES CASE STUDY HIGHLIGHTS			
Project Name & Description	Developed processes to utilize newly available domestically supplied lower cost, wide width Nanocrystalline (Finemet® FT-3W). Other nanocrystalline materials available: Finemet® FT3 (Finemet® FT3 is a registered trademark of Hitachi Metals), Vitroperm800® (Vitroperm800® is a registered trademark of Vacuumschmelze).		
Capabilities Applied/Processes	Custom computer controlled annealing and atmospheric conditions for optimal annealing of our cores Superior bonding and cutting technology. Large sized processing equipment		
Overall Part Dimensions	Large core sizes available up to approx. 84"		
Material Used	Nanocrystalline (Finemet [®] FT-3W) Metglas Finemet [®] FT3-W is a registered trademark of Metglas Inc.		
Industry for Use	Widest scope of industries for any material		
In Process Testing/Inspection Performed	Core loss and other magnetic testing as required		
Volume	From prototypes to mass production		
Delivery/Turnaround Time	Typical 3-5 weeks delivery with expedites available		
Delivery Location	Worldwide		

https://www.mkmagnetics.com/

Advanced-Grade Materials

Magnetic Metals carries all types and thicknesses of soft magnetic materials with the most advanced magnetic properties and performance characteristics. They include:

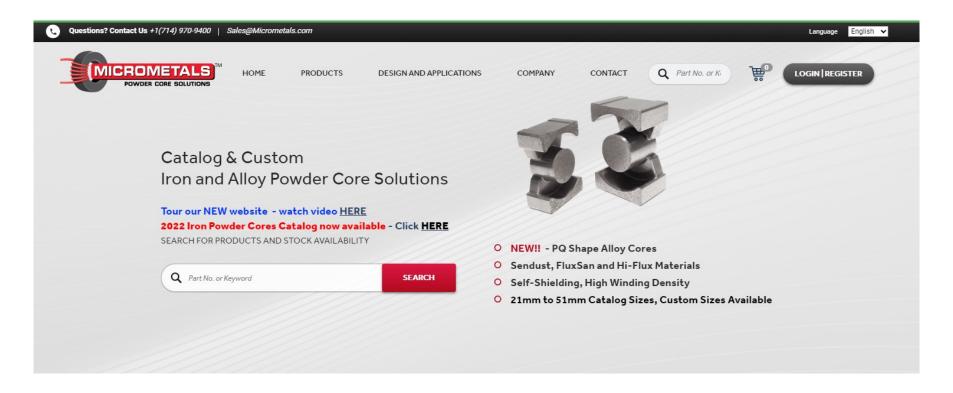
Amorphous Alloys	Square 80
Cobalt Iron	Super Square 80
Microsil™	Supermalloy™
Nanocrystalline Alloys	Supermendur™
Square 50	SuperPerm™ 49
	SuperPerm™ 80

https://www.magneticmetals.com/

PRODUCTS DESIGN ORDER COMPANY CONTACT US

PART NUMBER SEARCH

SEARCH


Can't find what you're looking for? Use the advanced search below.

ADVANCED PART NUMBER FINDER >

https://www.mag-inc.com/

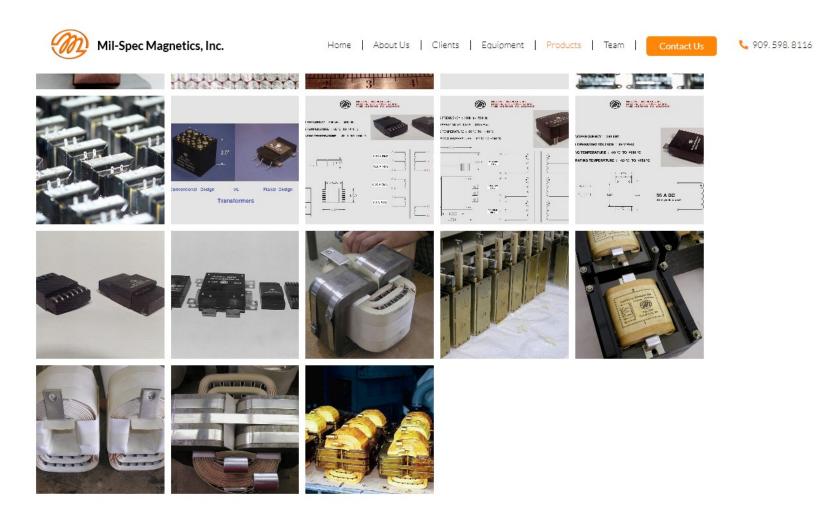
https://www.micrometals.com/

Transformers and Inductors Suppliers

Home About Us Product Line Quality Control Join Our Team Contact Us

Product Line

Over the years, Corona Magnetics, Inc. has done nearly everything. We specialize in challenging projects.


Type of Products

- Transformers
- · Custom transformers
- Inductors
- · Specialty coils
- High voltage
- High frequency
- Telemetry coils
- Precision self supporting coils
- Surface mount and through hole
- Miniature to medium size

http://www.corona-magnetics.com/

Transformers and Inductors Suppliers

https://milspecmag.com/

Transformers and Inductors Suppliers

CAPABILITIES •

COMPANY •

INNOVATION •

NEWSROOM •

INVESTORS •

NYSE: LHX + 186.74 +\$1.56

CAREERS

ERS CONTACT U

TACT US

https://www.l3harris.com/

Questions

Questions